
Object Intro and Miscellaneous

Checkout ObjectIntroAndMisc project from SVN

Help from Peers

• Having a peer help you with some strange bug
or specific problem – Great Idea!

• Discussing your approach to a problem with a
peer – still OK

• Letting a peer copy your code/Emailing code
to a peer – NEVER OK

• Every person has a unique code style, it’s easy
to tell when two sets of code are too similar

Q1

Javadoc
comments

/**

* Has a static method for computing n!

* (n factorial) and a main method that

* computes n! for n up to Factorial.MAX.

*

* @author Mike Hewner & Delvin Defoe

*/

public class Factorial {

/**

* Biggest factorial to compute.

*/

public static final int MAX = 17;

/**

* Computes n! for the given n.

*

* @param n

* @return n! for the given n.

*/

public static int factorial (int n) {

...

}

...

}

Java provides Javadoc

comments (they begin with

/**) for both:

• Internal documentation for

when someone reads the

code itself

• External documentation for

when someone re-uses the

code

Comment your own code now, as

indicated by this example. Don’t

forget the @author tag in

HelloPrinter.

Q2 - 3

Writing Javadocs

• Written in special comments: /** … */

• Can come before:
– Class declarations

– Field declarations

– Constructor declarations

– Method declarations

• Eclipse is your friend!
– It will generate Javadoc comments automatically

– It will notice when you start typing a Javadoc comment

In all your code:

• See http://www.rose-
hulman.edu/class/csse/csse220/201720/Homework/programGradin
g.html

• Write appropriate comments:
– Javadoc comments primarily for classes.

– Explanations of anything else that is not obvious in any spot.

• Give self-documenting variable and method names:
– Use name completion in Eclipse, Ctrl-Space, to keep typing cost low and

readability high

• Use Ctrl-Shift-F in Eclipse to format your code.

• Take care of all auto-generated TODO’s.
– Then delete the TODO comment.

• Correct ALL compiler warnings. Quick Fix is your friend!

http://www.rose-hulman.edu/class/csse/csse220/201720/Homework/programGrading.html

• Breakpoint

• Single stepping

• Inspecting variables

Debugging—Key Concepts

Q4

 Debugging Java programs in Eclipse:
◦ Launch using the debugger

◦ Setting a breakpoint

◦ Single stepping: step over and step into

◦ Inspecting variables

 Complete WhackABug exercise

Debugging—Demo

Identifiers (Names) in Java

• The rules:
– Start with letter or underscore (_)

– Followed by letters, numbers, or underscores

• The conventions:
– variableNamesLikeThis

– methodNamesLikeThis(…)

– ClassNamesLikeThis

• You should follow the conventions!

Class – What, When, Why, & How?

What:

• A blueprint for a custom type

When:

• Define a class when you’re representing a
concept (think nouns)

• When no other existing type can do what you
want/need

Class – What, When, Why, & How?

Why:

• Keep similar concepts together

• Encapsulation (we’ll expand on this next time)

How:

public class ClassName {

//fields

//methods

}

Constructors – What, When, Why, How?

What:
• Special method called when a new instance of a

class is created
• Initializes the new instance
• Like the __init__ method in Python
When:
• Define a constructor when special initialization of

a class is required
• Otherwise, Java implicitly creates a no-argument

constructor if you don’t add one

Constructors – What, When, Why, How?

Why:
• Allows you to ensure that a new instance of a class is a setup

exactly how it needs to be before use of other methods/fields
• Puts it in a good state
How:

public class MyClass {
public MyClass() {

//initialization code
}
public MyClass(ParamType paramName) {

//initialization code
}

}

Object Constructors

• int num = 5;

– This works for primitive typed data

• What about “objects” (made from classes)?

Rectangle box = new Rectangle(0, 0, 5, 5);

Using Constructors

In Java, all variables

must have a type

Every variable must have a

name. The new operator is what

actually makes the new

object, in this case a new

rectangle.

The constructor arguments

specifies that the new

rectangle called box should

be at the origin with a height

and width of 5.

Q6

Object Constructors

• Every “object” must be created

– How do we create them?

• Open ObjectConstructorPractice.java

– Let’s do the first couple of TODOs together

• On your own: Try creating a variable of the
String class using a constructor (in the main
method somewhere).

Q7 - 9

new Keyword– What, When, Why, How?

What:

• Used to create a new instance of a class

• Calls the constructor in the class

When:

• Creating a new instance of a class

– If the class definition is the blueprint for the
house, a house that has been built is the “new
instance” of the blueprint.

new Keyword– What, When, Why, How?

Why:

• To make a new instance

How:

• MyClass instance = new MyClass();

– This will call the constructor with the matching
parameters in MyClass

• Also used for arrays (as we’ve seen before):

– int[] arr = new int[5];

Using Objects and Methods

Works just like Python:
◦ object.method(argument, ...)

 Java Example:

Implicit
argument

Explicit
arguments

String name = "Bob Forapples";

PrintStream printer = System.out;

int nameLen = name.length();

printer.printf("'%s' has %d characters", name, nameLen);

The dot notation is
also used for fields

“Who does what, with
what?”

Implementing classes

• Live coding with Bank Account object

Now code the StudentAssignments
class yourself

• Uncomment the stuff in
StudentAssignmentsMain to see what the
class ought to do

• Then create the class and add the constructors
and methods you need

• If you finish early, add a function to compute
the student’s average grade

